打赏

相关文章

2024.1.26力扣每日一题——边权重均等查询

2024.1.26 题目来源我的题解方法一 使用dfs对每一组查询都求最近公共祖先(会超时,通不过)方法二 不需要构建图,直接在原始数组上进行求最大公共祖先的操作。 题目来源 力扣每日一题;题序:2846 我的题解 …

《低功耗方法学》翻译——附录B:UPF命令语法

附录B:UPF命令语法 本章介绍了文本中引用的所选UPF命令的语法。 节选自“统一电源格式(UPF)标准,1.0版”,经该Accellera许可复制。版权所有:(c)2006-2007。Accellera不声明或代表摘录材料的准确性或内容&…

Linux前后端程序部署

1.总述 首先安装包类型分为 二进制发布包安装:找到对应自己的linux平台版本(CentOS还是redhat等),的具体压缩文件,解压修改配置 源码编译安装:需要自己进行编译 对于redhat安装包,可以使用rpm命令进行安装,但是rpm命令安装不能够解决依赖库的问题,常用的rpm命令,只用于卸载…

NO.467 环绕字符串中唯一的子字符串

题目 定义字符串 base 为一个 "abcdefghijklmnopqrstuvwxyz" 无限环绕的字符串,所以 base 看起来是这样的: "...zabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcd....". 给你一个字符串 s ,请你统计并返回…

C语言之数据在内存中的存储

目录 1. 整数在内存中的存储2. 大小端字节序和字节序判断什么是大小端?为什么有大小端?练习1练习2练习3练习4练习5练习6 3. 浮点数在内存中的存储浮点数存的过程浮点数取得过程练习题解析 1. 整数在内存中的存储 在讲解操作符的时候,我们已经…

嵌入式中C 语言中的三块技术难点

C 语言在嵌入式学习中是必备的知识,甚至大部分操作系统都要围绕 C 语言进行,而其中有三块技术难点,几乎是公认级别的“难啃的硬骨头”。 今天就来带你将这三块硬骨头细细拆解开来,一定让你看明白了。 0x01 指针 指针是公认最难理…

手机版浏览

扫一扫体验

微信公众账号

微信扫一扫加关注

返回
顶部